Sistema de Numeração Decimal

A convivência em sociedade provocou na humanidade, a necessidade da criação de um mecanismo capaz de gerenciar numerais.

Para expressarmos quantidades ou para enumerarmos objetos, por exemplo, utilizamos um sistema de numeração. Existem vários sistemas de numeração, mas o mais comum e que é frequentemente utilizado por nós, é o sistema de numeração decimal.

Neste sistema os números são representados por um agrupamento de símbolos que chamamos de algarismos ou dígitos.

O sistema de numeração decimal possui ao todo dez símbolos distintos, através dos quais se utilizarmos apenas um dígito, podemos representar quantidades de zero a nove.

Dígitos ou algarismos são símbolos numéricos utilizados na representação de um número, por exemplo, o número 756 é composto de três dígitos: 7, 5 e 6.

No sistema decimal contamos com dez símbolos distintos: 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9.


Números no Sistema Decimal

0 - zero:

1 - um:

2 - dois:  

3 - três:   

4 - quatro:    

5 - cinco:     

6 - seis:      

7 - sete:       

8 - oito:        

9 - nove:         

Acima vemos dez números no sistema decimal com apenas um Dígito.

Observe que o 0 ( zero ) é utilizado neste caso para representarmos a ausência de bolinhas. O 1 representa uma bolinha, o 2 representa duas bolinhas e assim por diante, sempre considerando uma bolinha a mais, até chegarmos ao número 9 que representa um total de nove bolinhas.

Se tivermos mais uma bolinha, como será a representação simbólica deste numeral?

Como já utilizamos todos os dez símbolos e não dispomos de outros, vamos recomeçar a sequência pegando novamente o 0, mas agora iremos trabalhar com dois dígitos.

À esquerda deste zero devemos colocar o próximo símbolo. Como ainda não utilizamos nenhum símbolo nesta posição, ele seria o 0, mas como o zero não é um dígito significativo, pois ele representa a ausência, então o primeiro símbolo a utilizar será o 1.

O próximo número será então:

10 - dez:  |

Note que a bolinha à esquerda do símbolo | representa as dez bolinhas, ou uma dezena e à direita do | não temos nenhuma bolinha, pois estamos representando o zero.

Se tivermos uma bolinha a mais, ou seja, onze, a representação será:

11 - onze:  | 

Repare que agora temos uma bolinha de cada lado do símbolo |, a bolinha à esquerda vale dez vezes mais que a da direita. A da esquerda vale dez e a da direita vale um.

De doze a dezenove temos as seguintes representações:

12 - doze:  |  

13 - treze:  |   

14 - quatorze:  |    

15 - quinze:  |     

16 - dezesseis:  |      

17 - dezessete:  |       

18 - dezoito:  |        

19 - dezenove:  |         

O critério é sempre o mesmo, a bolinha à esquerda do símbolo | vale dez vezes mais que qualquer uma das bolinhas da direita.

E se tivermos outra bolinha a mais, qual será a representação?

Como no novo ciclo já utilizamos todos os dígitos de 0 a 9, faremos tal qual no caso do dez. À direita utilizaremos o 0, e a esquerda utilizaremos o próximo símbolo. Como estávamos utilizando o 1, o próximo será o 2. Temos então:

20 - vinte:   |

Seguindo o raciocínio vinte e um será:

21 - vinte e um:   | 

Para setenta e dois temos:

72 - setenta e dois:        |  

Para noventa e nove temos:

99 - noventa e nove:          |         

Com mais uma bolinha chegaremos a cem. Como já utilizamos os noves símbolos à direita do |, devemos novamente reiniciar em 0 e na esquerda devemos utilizar o próximo símbolo da sequência, mas acontece que na esquerda do | também já utilizamos os nove símbolos, então devemos voltar a 0 nesta posição e à sua esquerda utilizarmos o próximo símbolo. Como ainda não utilizamos nenhum e como não podemos utilizar o zero, pois ele não é significativo, utilizaremos o 1.

A representação para o número cem será então:

100 - cem:  | |

Qualquer bolinha nesta posição valerá cem vezes mais que qualquer bolinha na posição da direita.

Vejamos a representação para o número cento e onze:

111 - cento e onze:  |  | 

Temos uma bolinha na esquerda, outra no centro e uma outra na direita. Embora todas sejam representadas pelo símbolo 1, a da esquerda vale 100, a do meio vale 10 e a da direita vale 1 mesmo.

A bolinha da direita ocupa a casa das unidades e por isto vale exatamente o que o seu símbolo representa, ou seja, vale 1 unidade.

A bolinha à sua esquerda, isto é, a bolinha do centro, ocupa a casa das dezenas e por isto vale dez vezes mais do que o seu símbolo representa, ou seja, vale 10 unidades.

Finalmente a bolinha à sua esquerda, isto é, a bolinha da esquerda, ocupa a casa das centenas e por isto vale cem vezes mais do que o seu símbolo representa, ou seja, vale 100 unidades.


Ordens e Classes

As casas das unidades, das dezenas e das centenas são chamadas de ordens.

No sistema de numeração decimal a cada três ordens posicionadas da direita para a esquerda temos uma classe.

A primeira classe, também da direita para a esquerda, é a das unidades, na sequência temos a classe dos milhares, dos milhões, bilhões e assim por diante conforme a figura abaixo:

O número 111 visto acima está todo contido na classe das unidades simples.

O dígito da esquerda é da ordem das centenas, por isto ao invés de 1 unidade, ele equivale a 100 unidades.

O central é da ordem das dezenas, equivalendo então a 10 unidades ao invés de 1 unidade apenas.

O dígito da direita é da ordem das unidades equivalendo ao próprio valor do símbolo 1 que é de 1 unidade.

Para facilitar a leitura dos números com muitas classes, podemos separá-las utilizando o caractere ".", assim o número dois milhões, quinhentos e seis mil, oitocentos e trinta e nove pode ser escrito como 2.506.839.

Este número é formado por três classes.

A classe dos milhões é composta por uma única ordem, o dígito das unidades de milhões. Neste caso o símbolo 2 na verdade representa dois milhões unidades ( 2.000.000 ).

Na segunda classe, a dos milhares, temos três ordens, cada uma com os seguintes valores:

O símbolo 5 na ordem das centenas de milhar representa quinhentas mil unidades ( 500.000 ).

O símbolo 0 na ordem das dezenas de milhar, como sabemos não representa qualquer unidade.

O símbolo 6 na ordem das unidades de milhar representa seis mil unidades ( 6.000 ).

Finalmente na primeira classe, a classe das unidades, temos:

O símbolo 8 na ordem das centenas de unidades representa oitocentas unidades ( 800 ).

O símbolo 3 na ordem das dezenas de unidades representa trintas unidades ( 30 ).

O símbolo 9 na ordem das unidades de milhar representa nove unidades ( 9 ).


Parte Fracionária

Até agora só tratamos de números inteiros, mas no universo do sistema de numeração decimal temos também os números fracionários.

Para separarmos a parte inteira da parte fracionária, utilizamos a vírgula.

Como já vimos, na parte inteira o valor de cada símbolo depende da sua posição relativa no número. Partindo-se da posição mais à direita, quando nos deslocamos à esquerda, a cada ordem o valor do símbolo aumenta em 10 vezes. De forma semelhante, quando nos deslocamos à direita na parte fracionária, a cada posição o valor do símbolo diminui em 10 vezes.

A primeira casa após a vírgula refere-se aos décimos, a segunda aos centésimos, a terceira aos milésimos, a quarta aos décimos de milésimos, e assim por diante, centésimos de milésimos, milionésimos, ...

Assim no número 0,1 o símbolo 1 não tem o valor de um, mas sim o valor relativo de apenas um décimo.

No número 0,02 o símbolo 2 equivale a dois centésimos.

No número 0,003 o símbolo 3 equivale a três milésimos e em 0,0003 equivale a três décimos de milésimos.

O número 0,25 pode ser lido como vinte e cinco centésimos ou ainda como dois décimos e cinco centésimos.

Lê-se 7,123 como sete inteiros e cento e vinte e três milésimos, ou ainda como sete inteiros, um décimo, dois centésimos e três milésimos.

1,5 é lido como um inteiro e cinco décimos.

 

Acesse também a Calculadora de Números Decimais por Extenso que escreve por extenso o número que você desejar.